
Statistical Algorithmic Profiling for
Randomized Approximate Programs

Keyur Joshi, Vimuth Fernando, Sasa Misailovic
University of Illinois at Urbana-Champaign

ICSE 2019

CCF-1629431
CCF-1703637

Randomized Approximate Algorithms

Modern applications deal with large amounts of data

Obtaining exact answers for such applications is
resource intensive

Approximate algorithms give a “good enough”
answer in a much more efficient manner

Randomized Approximate Algorithms

Randomized approximate algorithms have attracted the attention of
many authors and researchers

Developers still struggle to properly test implementations of these algorithms

Example Application: Finding Near-Duplicate
Images

Locality Sensitive Hashing (LSH)

Finds vectors near a given vector in high dimensional space

LSH randomly chooses some locality sensitive hash functions in every run

Locality sensitive – nearby vectors are more likely to have the same hash

Every run uses different hash functions – output can vary

Locality Sensitive Hashing (LSH) Visualization

ℎ1

ℎ2

ℎ3
0

1

0 1

0

1

Locality Sensitive Hashing (LSH) Visualization

ℎ3
ℎ2

ℎ1

0

1
0 1

0

1

Comparing Images with LSH

Suppose, over 100 runs, an LSH implementation
considered the images similar 90 times

Is this the expected behavior?

Usually, algorithm designers state the expected behavior
by providing an accuracy specification

We wish to ensure that the implementation satisfies
the accuracy specification

LSH Accuracy Specification*

Correct LSH implementations consider two vectors 𝑎 and 𝑏 to be

neighbors with probability 𝑝𝑠𝑖𝑚 = 1 − 1 − 𝑝𝑎,𝑏
𝑘 𝑙

over runs

𝑝𝑠𝑖𝑚 depends on:

• 𝑘, 𝑙: algorithm parameters (number of hash functions)

• 𝑝𝑎,𝑏: dependent on the hash function and the distance between 𝑎
and 𝑏 (part of the specification)

*P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards removing the curse of dimensionality,” in STOC 1998

Challenges in Testing an LSH Implementation

Output can vary in every run due to different hash functions

Need to run LSH multiple times to observe value of 𝑝𝑠𝑖𝑚

Need to compare expected and observed values of 𝑝𝑠𝑖𝑚

Values may not be exactly the same – how close must they be?

Need to use an appropriate statistical test for such a comparison

Testing an LSH Implementation Manually

To test manually, the developer must provide:

Algorithm Parameters
(for LSH: range of 𝑘, 𝑙 values)

Appropriate Statistical Test

Multiple Test Inputs

Implementation Runner

Number of Times to Run LSH

Visualization Script

Testing an LSH Implementation With AxProf

To test with AxProf, the developer must provide:

Algorithm Parameters
(for LSH: range of 𝑘, 𝑙 values)

Appropriate Statistical Test

Multiple Test Inputs

Implementation Runner

Number of Times to Run LSH

Visualization Script
AxProf

Accuracy / Performance
Specification (math notation)

Input and Output Types
(for LSH: list of vectors)

Testing an LSH Implementation With AxProf

To test with AxProf, the developer must provide:

Algorithm Parameters

Appropriate Statistical Test

Multiple Test Inputs

Implementation Runner

Number of Samples
(runs / inputs)

Visualization Script
AxProf

Accuracy / Performance
Specification (math notation)

Input and Output Types
(vectors / matrices / maps)

Approximate Algorithm

LSH Accuracy Specification Given to AxProf

Math Specification: A vector pair 𝑎, 𝑏 appears in the output if LSH considers

them neighbors. This should occur with probability 𝑝𝑠𝑖𝑚 = 1 − 1 − 𝑝𝑎,𝑏
𝑘 𝑙

AxProf specification:

Input list of (vector of real);
Output list of (pair of (vector of real));
forall a in Input, b in Input :

Probability over runs [[a, b] in Output] ==
1 - (1 – (p_ab(a, b)) ^ k) ^ l

p_ab is a helper function that calculates 𝑝𝑎,𝑏

Example LSH Implementation: TarsosLSH

Popular (150 stars) LSH implementation in Java available on GitHub*

Includes a (faulty) benchmark which runs LSH once and reports accuracy

AxProf found a fault not detected by the benchmark

Fault is present for one hash function for the ℓ1 distance metric

*https://github.com/JorenSix/TarsosLSH

https://github.com/JorenSix/TarsosLSH

TarsosLSH Failure Visualization 1

AxProf:

FAIL
We found and
fixed 3 faults
and ran AxProf
again

Represents a pair of
neighboring vectors
Should ideally lie
along the diagonal

Obtained by
running TarsosLSH
multiple times

Obtained from specification

TarsosLSH Failure Visualization 2

AxProf:

FAIL
Contains 1
subtle fault

Visual analysis
not sufficient!

Visualization of Corrected TarsosLSH

AxProf:

PASS

AxProf Accuracy Specification Language

Handles a wide variety of algorithm specifications

AxProf language specifications appear very similar to mathematical specifications

Expressive:

• Supports list, matrix, and map data structures

• Supports probability and expected value specifications

• Supports specifications with universal quantification over input items

Unambiguous:

• Explicit specification of probability space – over inputs, runs, or input items

Accuracy Specification Example 1:
Probability over inputs

Probability over inputs [Output > 25] == 0.1

Multiple
Inputs:
𝑖𝑛𝑝𝑢𝑡1
𝑖𝑛𝑝𝑢𝑡2
𝑖𝑛𝑝𝑢𝑡3

…
𝑖𝑛𝑝𝑢𝑡𝑚

Algorithm
One Run:
𝑠𝑒𝑒𝑑1

Multiple
Outputs:
𝑜𝑢𝑡𝑝𝑢𝑡1
𝑜𝑢𝑡𝑝𝑢𝑡2
𝑜𝑢𝑡𝑝𝑢𝑡3

…
𝑜𝑢𝑡𝑝𝑢𝑡𝑚

10% of the
outputs
must be > 25

Accuracy Specification Example 2:
Probability over runs

Probability over runs [Output > 25] == 0.1

One Input:
𝑖𝑛𝑝𝑢𝑡1

Algorithm
Multiple

Runs:
𝑠𝑒𝑒𝑑1
𝑠𝑒𝑒𝑑2
𝑠𝑒𝑒𝑑3

…
𝑠𝑒𝑒𝑑𝑛

Multiple
Outputs:
𝑜𝑢𝑡𝑝𝑢𝑡1
𝑜𝑢𝑡𝑝𝑢𝑡2
𝑜𝑢𝑡𝑝𝑢𝑡3

…
𝑜𝑢𝑡𝑝𝑢𝑡𝑛

10% of the
outputs
must be > 25

Accuracy Specification Example 3:
Probability over input items

Probability over i in Input [Output[i] > 25] == 0.1

One Input,
Multiple

Items:
𝑖1
𝑖2
𝑖3
…
𝑖𝑘

Algorithm
One Run:
𝑠𝑒𝑒𝑑1

One Output,
Multiple

Items:
𝑜𝑢𝑡𝑝𝑢𝑡 𝑖1
𝑜𝑢𝑡𝑝𝑢𝑡 𝑖2
𝑜𝑢𝑡𝑝𝑢𝑡 𝑖3

…
𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑘

10% of the
output items
must be > 25

Accuracy Specification Example 4:
Expectation

Expectation over inputs [Output] == 100

Expectation over runs [Output] == 100

Expectation over i in Input [Output[i]] == 100

Accuracy Specification Example 5:
Universal quantification

forall i in Input:
Probability over runs [Output [i] > 25] == 0.1

One Input,
Multiple

Items:
𝑖1
𝑖2
…
𝑖𝑘

Algorithm
Multiple

Runs:
𝑠𝑒𝑒𝑑1
𝑠𝑒𝑒𝑑2

…
𝑠𝑒𝑒𝑑𝑛

Multiple
Outputs,

Multiple Items:
𝑜𝑢𝑡𝑝𝑢𝑡1…𝑛 𝑖1
𝑜𝑢𝑡𝑝𝑢𝑡1…𝑛 𝑖2

…
𝑜𝑢𝑡𝑝𝑢𝑡1…𝑛 𝑖𝑘

Multiple Outputs
per Item:

𝑜𝑢𝑡𝑝𝑢𝑡1 𝑖1
…

𝑜𝑢𝑡𝑝𝑢𝑡𝑛 𝑖1

10% of the outputs
for every input
item must be > 25

Accuracy Specification Testing

AxProf generates code to fully automate specification testing:

1. Generate inputs with varying properties

2. Gather outputs of the program from multiple runs/inputs

3. Test the outputs against the specification with a statistical test

4. Combine the results of multiple statistical tests, if required

5. Interpret the final combined result (PASS/FAIL)

LSH: Choosing a Statistical Test

AxProf accuracy specification for LSH:
forall a in Input, b in Input :

Probability over runs [[a, b] in Output] == 1-(1–(p_ab(a,b))^k)^l

Must compare values of 𝑝𝑎,𝑏 for every 𝑎, 𝑏 in input
Then combine results of each comparison into a single result

AxProf uses the non-parametric binomial test for each probability comparison
• Non-parametric – does not make any assumptions about the data

For forall, AxProf combines individual statistical tests using Fisher’s method

LSH: Choosing the Number of Runs

Number of runs for the binomial test depends on desired level of confidence:

• 𝜶: Probability of incorrectly assuming a correct implementation is faulty (Type 1 error)

• 𝜷: Probability of incorrectly assuming a faulty implementation is correct (Type 2 error)

• 𝜹: Minimum deviation in probability that the binomial test should detect

Formula for calculating the number of runs:
𝑧
1−

𝛼
2

𝑝0 1−𝑝0 +𝑧1−𝛽 𝑝𝑎 1−𝑝𝑎

𝛿

2

We choose 𝛼 = 0.05, 𝛽 = 0.2, 𝛿 = 0.1 (commonly used values)

• AxProf calculates that 200 runs are necessary

LSH: Generating Inputs

Input list of (vector of real);
forall a in Input, b in Input :
Probability over runs [[a, b] in Output] == 1-(1–(p_ab(a,b))^k)^l

There is an implicit requirement that this specification should be satisfied for every input

AxProf provides flexible input generators for various input types

• User can provide their own input generators

LSH: Generating Inputs

For LSH, AxProf can generate a list of input vectors with adjustable
properties:

• Average distance between vectors

• Number of vectors in input

AxProf determines which input properties affect the accuracy of the
algorithm using the Maximal Information Coefficient (MIC)*:

• The average distance affects LSH accuracy

• The number of input vectors does not affect LSH accuracy

*See paper for more details

Performance Specification Testing

The AxProf language also supports time and memory specifications

Time specification for LSH:
Asymptotic notation: 𝑂 𝑘𝑙𝑛 AxProf: k*l*size(Input)

Memory specification for LSH:
Asymptotic notation: 𝑂 𝑙𝑛 AxProf: l*size(Input)

Like accuracy specifications, AxProf tests performance specifications via
statistical tests

Performance Specification Testing

AxProf gathers performance data across
multiple runs and algorithm parameter values

AxProf fits a curve and compares it to the
specification (like algorithmic profilers*)

To check for conformance: 𝑅2 metric

If 𝑅2 is lower than a threshold, AxProf reports
a failure

Expected time complexity: 𝑂 log 𝑛
Fitted curve:

*D. Zaparanuks and M. Hauswirth, “Algorithmic profiling,” and E. Coppa et al., “Input-sensitive profiling,” both in PLDI, 2012.

Research Questions

• Research Question 1: Can AxProf find accuracy bugs in approximate
algorithm implementations?

• Research Question 2: Can AxProf identify input parameters that
affect algorithm accuracy?

• Research Question 3: Can AxProf find performance anomalies in
algorithm implementations?

See Paper

Tested Algorithms
Algorithm

Locality Sensitive Hashing (LSH)

Bloom Filter

Count-Min Sketch

HyperLogLog

Reservoir Sampling

Approximate Matrix Multiply

Chisel/blackscholes

Chisel/sor

Chisel/scale

5 Big Data Algorithms

1 Approximate Numerical Computation Algorithm

3 Algorithms Running on Imprecise Hardware

Tested Algorithms

Each parameter can take
multiple values

We chose ranges of
parameter values to test
based on algo. author
recommendations

A particular combination
of parameter values is an
algorithm configuration

Algorithm Algorithm Parameters

Locality Sensitive Hashing (LSH) No. hash functions and hash tables

Bloom Filter Capacity and maximum false
positive probability

Count-Min Sketch Error factor and error probability

HyperLogLog Number of hash values

Reservoir Sampling Reservoir size

Approximate Matrix Multiply Sampling rate

Chisel/blackscholes Reliability factor

Chisel/sor Reliability factor and no. iterations

Chisel/scale Reliability factor and scale factor

Tested Algorithms
Algorithm Algorithm Parameters Accuracy Specification Type

Locality Sensitive Hashing (LSH) No. hash functions and hash tables Probability over runs
with universal quantification

Bloom Filter Capacity and maximum false
positive probability

Probability over input items

Count-Min Sketch Error factor and error probability Probability over input items

HyperLogLog Number of hash values Probability over inputs

Reservoir Sampling Reservoir size Probability over runs
with universal quantification

Approximate Matrix Multiply Sampling rate Probability over runs

Chisel/blackscholes Reliability factor Probability over runs

Chisel/sor Reliability factor and no. iterations Probability over runs

Chisel/scale Reliability factor and scale factor Expectation over runs

From GitHub (except Chisel)

Selection factors:
• No. of stars on GitHub
• Repository activity
• GitHub search rank
• Java / Python / C / C++

Algorithm Implementation

Locality Sensitive
Hashing

TarsosLSH

java-LSH

Bloom Filter libbf

BloomFilter

Count-Min Sketch alabid

awnystrom

HyperLogLog yahoo

ekzhu

Reservoir Sampling yahoo

sample

Matrix Multiplication RandMatrix

mscs

blackscholes Chisel

sor Chisel

scale Chisel

AxProf detected statistical test
failures in six implementations

After manual inspection – found
faults in five implementations

One false positive (*) for ekzhu
HyperLogLog

Implementation
Tested

Configurations
Configurations w/
Accuracy Failures

TarsosLSH 12 12

java-LSH 4 4

libbf 60 0

BloomFilter 60 0

alabid 90 90

awnystrom 90 81

Yahoo (HyperLogLog) 40 0

ekzhu 40 2*

Yahoo (Reservoir) 100 0

sample 100 0

RandMatrix 243 30

mscs 16 0

Chisel (blackscholes) 3 0

Chisel (sor) 108 0

Chisel (scale) 20 0

Errors in Implementations

We submitted a pull request for each faulty implementation:

• Four faults were caused by the use of incorrect hash functions

• One fault was caused by incorrect sampling to improve efficiency

Four pull requests were accepted – one is still pending

Developer feedback:

“Hi, I am the creator of TarsosLSH and I have just seen your paper, especially the
parts relevant to TarsosLSH… I would like to thank you for your work and for the
well documented merge requests.”

False Warning for HyperLogLog (ekzhu)

The correctness of AxProf depends on the correctness of the specification

Some specifications fail to capture fine details – may cause failures in AxProf’s
statistical tests for specific inputs

HyperLogLog applies error correction if the output is below a certain threshold

AxProf found failures when the output size is very close to the threshold

Algorithm Implementation
Tested

Configurations
Configurations w/
Accuracy Failures

Time/Memory
Spec. Test Results

Locality Sensitive
Hashing

TarsosLSH 12 12 Pass

java-LSH 4 4 Pass

Bloom Filter libbf 60 0 Fail

BloomFilter 60 0 Fail

Count-Min Sketch alabid 90 90 Pass

awnystrom 90 81 Fail†

HyperLogLog yahoo 40 0 Fail

ekzhu 40 2* Pass

Reservoir Sampling yahoo 100 0 Fail

sample 100 0 Fail†

Matrix Multiplication RandMatrix 243 30 Pass

mscs 16 0 Pass

blackscholes Chisel 3 0 Pass

sor Chisel 108 0 Pass

scale Chisel 20 0 Pass

†False positives:
measurement
noise

Why Were Developer-Written Tests Inadequate?

• Focusing only on performance testing

• Running the implementation only once

• Running on only one input

• Running on only one algorithm configuration

AxProf alleviates these inadequacies via an easy to use framework

Conclusion

AxProf is a tool for accuracy and performance profiling

Automates many tasks for testing the implementations of emerging
randomized and approximate algorithms

With AxProf, we found five faulty implementations from a set of 15
implementations

Check out AxProf at axprof.org

http://axprof.org

